Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application

نویسندگان

  • Asma Rabaoui
  • Zied Lachiri
  • Noureddine Ellouze
چکیده

Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features. Keywords—Sounds recognition, HMM classifier, Multi-style training, Environmental Adaptation, Feature combinations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

HMM-Based Audio Keyword Generation

With the exponential growth in the production creation of multimedia data, there is an increasing need for video semantic analysis. Audio, as a significant part of video, provides important cues to human perception when humans are browsing and understanding video contents. To detect semantic content by useful audio information, we introduce audio keywords which are sets of specific audio sounds...

متن کامل

Diagnosis of OCD Patients Using Drawing Features of Bender Gestalt Shapes

Background: Since psychological tests such as questionnaire or drawing tests are almost qualitative, their results carry a degree of uncertainty and sometimes subjectivity. The deficiency of all drawing tests is that the assessment is carried out after drawing the objects and lots of information such as pen angle, speed, curvature and pressure are missed through the test. In other words, the ps...

متن کامل

An investigation of HMM classifier combination strategies for improved audio-visual speech recognition

The combining of independent audio and visual HMM classifiers (late integration) has been shown to out perform the combination of audio and visual features in a single HMM classifier (early integration) when either or both modalities are presented with distortion for the task of speech recognition. Theoretical foundations for the optimal combination of these audio and video classifiers are stil...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008